首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49932篇
  免费   5627篇
  国内免费   3087篇
电工技术   4235篇
综合类   4011篇
化学工业   8625篇
金属工艺   6922篇
机械仪表   2878篇
建筑科学   4183篇
矿业工程   1258篇
能源动力   1587篇
轻工业   2458篇
水利工程   886篇
石油天然气   1748篇
武器工业   560篇
无线电   7032篇
一般工业技术   6184篇
冶金工业   1799篇
原子能技术   442篇
自动化技术   3838篇
  2024年   140篇
  2023年   890篇
  2022年   1411篇
  2021年   1946篇
  2020年   1766篇
  2019年   1467篇
  2018年   1386篇
  2017年   1971篇
  2016年   1930篇
  2015年   2028篇
  2014年   2942篇
  2013年   2951篇
  2012年   3632篇
  2011年   3979篇
  2010年   2874篇
  2009年   3208篇
  2008年   2649篇
  2007年   3213篇
  2006年   3128篇
  2005年   2532篇
  2004年   2097篇
  2003年   1904篇
  2002年   1480篇
  2001年   1283篇
  2000年   1060篇
  1999年   919篇
  1998年   680篇
  1997年   634篇
  1996年   450篇
  1995年   503篇
  1994年   366篇
  1993年   278篇
  1992年   212篇
  1991年   181篇
  1990年   130篇
  1989年   111篇
  1988年   76篇
  1987年   56篇
  1986年   32篇
  1985年   16篇
  1984年   22篇
  1983年   16篇
  1982年   24篇
  1981年   7篇
  1980年   14篇
  1979年   6篇
  1962年   4篇
  1960年   3篇
  1959年   8篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
王维  雷静 《声学技术》2022,41(5):724-728
近年来,通过优化飞行程序降低机场飞机噪声影响成为机场环境保护的重要研究方向。文章首先建立了基于飞机“噪声-功率-距离”数据的噪声计算模型,介绍了平均飞行航迹以及连续爬升运行(Continuous Climb Opera-tion, CCO)离场程序的相关理论,最后以大型国际机场为实例,使用飞机平均飞行航迹进行噪声预测,运用综合噪声模型计算出噪声影响面积并绘制噪声影响等值线图,比较了CCO离场相对常规的标准仪表离场(Standard Instru-ment Departure, SID)的降噪效果。结果表明,CCO离场程序可有效降低机场噪声影响,在高噪声级影响区域的降噪效果更佳。  相似文献   
23.
《Ceramics International》2022,48(1):548-555
Silica-based ceramic cores are widely utilized for shaping the internal cooling canals of single crystal superalloy turbine blades. The thermal expansion behavior, creep resistance, and high temperature flexural strength are critical for the quality of turbine blades. In this study, the influence of zircon, particle size distribution, and sintering temperature on the high-temperature performance of silica-based ceramic cores were investigated. The results show that zircon is beneficial for narrowing the contraction temperature range and reducing the shrinkage, improving the creep resistance and high-temperature flexural strength significantly. Mixing coarse, medium and fine fused silica powders in a ratio of 5:3:2, not only reduced high temperature contraction, but effectively improved the creep resistance. Properly increasing the sintering temperature can slightly reduce the thermal deformation and improve the high-temperature flexural strength of the silica-based core, but excessively high sintering temperature negatively impacts the creep resistance and high-temperature flexural strength.  相似文献   
24.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
25.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
26.
To operate a bag filter continuously, pulse-jet cleaning of dust particles from the filter medium is commonly required, and the pulse-jet pressure significantly affects the filter performance. In this study, the accumulation structure of residual dust particles inside and on the surface of a filter medium at different pulse-jet pressures was investigated by constructing a simple model, and the influence of the dust structure on the filter performance was clarified. Using a simple model, we determined the effective ratio of filtration area β, which represents the ratio of the filterable area to the total filtration area, the true resistance coefficient due to the primary dust layer ζp’ thinly deposited on the filter surface, and the true resistance coefficient inside the filter media itself ζf. The effective ratio of filtration area β decreased with operation time for all pulse-jet pressures; however, it maintained a high value when the pulse-jet pressure was high. The validity of β analyzed by the model was verified using two different methods, and the results showed good agreement, indicating that the model is effective in identifying real conditions. The true resistance coefficient due to the primary dust layer ζp’ decreased as the pulse-jet pressure increased; however, the true resistance coefficient inside the filter media itself ζf’ was the highest at 0.5 MPa. In addition, the dust collection efficiency was different at each pulse-jet pressure, which was considered to be caused by the difference in the dust particle accumulation structure.  相似文献   
27.
Due to problems such as pores on surface-treated coatings, the corrosion resistance of pure titanium bipolar plates for proton-exchange membrane fuel cells can be further improved by increasing the corrosion resistance of pure titanium by using differential speed-rolling (DSR); however, these materials have not yet reached the standard requirements of bipolar plates (corrosion current density icorr<103 nA·cm?2). In this work, the corrosion resistance of pure titanium was improved by optimizing the DSR process while the strength was maintained. The best corrosion resistance of the DSR pure titanium was achieved when the roller speed ratio was 2, while icorr was 429 nA·cm?2 in a solution of 0.5 M H2SO4 and 2 mg/L HF at room temperature. The formability of the DSR pure titanium for bipolar plates was verified. The optimal holding pressure range was 6.8–7.0 kN.  相似文献   
28.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
29.
30.
Coke deposition has been considered to be one of the most important reasons hindering the stability of the catalyst during CH4/CO2 reforming. In this study, after the addition of P123 (PEG-PPG-PEG triblock copolymer), Ni2+ can be well-dispersed on the mesoporous molecular sieve MCM-41. And then, the catalysts were prepared by using N2 radio frequency (RF) discharge plasma for different treatment times to reduce the size of Ni particles, improve the anti-coking performance, and thereby improve the stability of the catalyst. The results showed that the catalyst NM-P123-PN2h exhibits superior catalytic properties in the CH4/CO2 reforming. The initial conversions of CH4 and CO2 were 90.80% and 89.60% at 750 °C, respectively. The catalyst NM-P123-PN2h showed highly coke resistance with less carbon deposition (1.12%) at 750 °C after 10 h of continuous reaction, while the carbon deposition of the catalyst NM-C was 37.32%. Compared with the traditional calcination method, the catalyst prepared by plasma treatment has a smaller particle size and better dispersibility of nickel. In particular, the nickel particle size of the catalyst NM-C was 8.37 nm, however, that of the catalyst NM-P123-PN2h was only 1.70 nm, and the nickel particle size was reduced by 5 times. Therefore, it can be concluded that the catalyst prepared under the combined action of P123 and RF plasma-treated can effectively improve the coke resistance of the catalyst and the stability of the CH4/CO2 reforming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号